Orientation to the SUCCESS Framework
OBJECTIVES

Key points:

- Overview of the SUCCEESS Framework
 - What it is and why it is being implemented
- How the SUCCEESS Framework measures performance
- Illustrate improvement tools that are currently being used by state agencies

- Next steps
SUCCESS FRAMEWORK OVERVIEW
FRAMEWORK OVERVIEW

S - Set measurable goals and targets
U - Use thinking tools and principles
C - Create your strategy
C - Create your organization
E - Engage staff at all levels
S - Synchronize policy and projects
S - Stay focused

Increased value to the State of Utah and demonstrated excellence
SUCCESS ROADMAP

- Identify major “systems” comprising majority of agency’s budget
- Define performance measures for each system
- Complete operating strategy for each system
- Apply improvement tools/methods
- Report progress/results
Agency Profile

<table>
<thead>
<tr>
<th>Agency: Major Systems Within Organization Comprising 80% or More of the Budget:</th>
<th>Department of Commerce</th>
</tr>
</thead>
</table>
| Licensing
 o Occupational Licensing (DOPL)
 o Real Estate
 o Consumer Protection
 o Securities
 o Corporation and Commercial Code | Enforcement
 o Occupational Licensing (DOPL)
 o Real Estate
 o Consumer Protection
 o Securities
 o Corporation and Commercial Code |
“Our obligation to the taxpayer requires that we continue delivering outstanding results …

[Our] target is to improve government operations and services by at least 25% (a combination of quality, cost, and throughput) by January 2017.”

Governor Gary R. Herbert
PERFORMANCE MEASURE

THE TARGET: 25% improvement in the performance ratio - quality throughput / operating expense.

QUALITY Accuracy, effectiveness, reliability

THROUGHPUT Capacity to serve or produce units of work - a measure of system volume

OPERATING EXPENSE

Measurement profile includes operational indicators. Operational indicators capture performance of specific processes.
WHAT DOES the IMPROVEMENT REPRESENT?

Labor Commission Example (one month data):

(T) Throughput = Workers’ Compensation Investigations (558)

(Q) Quality = Investigations resulting in compliance (45.87%)

(OE) Operating Expense = all direct/indirect costs to produce QT ($21,646)

QT/OE = .0119

25% Improvement Target = .0148

To achieve target, throughput and/or quality need to increase or there needs to be a reduction in operating expense (or a combination of all three). All improvements result in increased value to the state per dollar invested.
SUCCESS Management Information - System
Agency and Program Progress Dashboard

SUCCESS Progress Graph - System

System Name... 25% Target Laboratory Testing...

OE Value Graphs

Agency System Na. Health Laboratory Testing Services

$ Savings in OE

$ Savings in QT

$ Savings in QT/OE

Share your perspective
IMPROVEMENT TOOLS and PRINCIPLES
THROUGHPUT OPERATING STRATEGY (TOS)

WHAT a TOS IS

• A one page document identifying critical system elements: process flow, inputs, outputs and measures
• A simple picture of how a system *should* operate
• A macro view that captures the purpose of the system

WHAT a TOS IS NOT

• A complex portrayal of a system or a process
• An intricate, detail-oriented as-is map
• A map that requires elaborate explanation
STEP ONE: Develop a high level picture of the flow of work for the system
CONTRAINTS BASICS

• View the work of a system in terms of flow throughput or volume
• Constraints limit the overall amount of throughput that the system could otherwise produce
• Constraints can be centered around:
 o Bottlenecks
 o Highly-skilled resources
IDENTIFYING CONSTRAINTS

- How many units can this system produce in an hour?
- Where is the system constraint?
- What would happen if you increased capacity at B?
- What would happen if you increased capacity at C?
A system map and understanding of constraints enables us to look at our operation in a more strategic way. Our improvement efforts gain focus when we select a control point.

The control point is where we choose to place the constraint that regulates the throughput of the system.
The control point may be determined by:
- Highest skilled resource
- Highest valued resource
- Resource that requires the most investment to find or train
- Most value added process step

INPUTS
A → B → C → D → E

THROUGHPUT

THE CONTROL POINT
EXAMPLE: Doctor’s Office TOS

STEP TWO: Identify the control point

What should be the control point?
 o What resource do you want to maximize?
 o What is strategically desirable to regulate the throughput of the system?
CONTROL POINT: Diagnose and Treat

- The doctor's time and skill are the most rare and therefore, would provide the biggest gain for squeezing the most out of it
- In this system, clearly all functions are meant to support this activity--it is the anchor of value to the system
MAXIMIZING BLUE LIGHT

Blue Light: A system-critical resource performing its unique value-added activity (e.g. a welder welding)
FOCUSING STEPS

• Select the control point

• Decide how to **MAXIMIZE** the control point
 o Produce more of what it should produce (blue light)

• Ensure that everything else can always support the control point

• Elevate the control point or other specific parts of the system
 o Add resources to it
How to maximize capacity at the control point:

• Make certain it is doing what it should be doing
• Make certain it stops doing what it should not be doing
• Make certain it has the right amount of work to be effective
• Make certain it has what is needed to do the job
TOP 10 WASTES of CAPACITY

1. Lack of a full kit
2. Bad multi-tasking--pushing too much into the control point
3. Starving the control point
4. Non blue-light activities
5. Poor prioritization
6. Control point burn out--not enough excess capacity (should have 20%)
7. Waiting
8. Lack of skill set in the blue light
9. Rework(s)
10. Bottlenecks
MULTITASKING EXERCISE

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>LETTER</th>
<th>SHAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>□</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>○</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>△</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>□</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>○</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>△</td>
</tr>
</tbody>
</table>
EXAMPLE
INTERFERENCE DIAGRAM

Dr. spending time on “routine” issues

Delay in treatment plans

Computers slow at intake

Interruptions- phone calls, etc.

Patients have not signed HIPAA forms

Patients have not completed symptoms form

Patients miss appointments

Test results are not ready

Staff have questions on prescriptions

Follow-up appointment not scheduled

Dr. is over scheduled

Dr. doing paperwork

Dr. is waiting for patients

Walk-ins disrupt schedule

Patients have questions on treatment plan

Diagnose and treat
EXAMPLE GAP ANALYSIS

FULL KIT

SCHEDULING

MULTI-TASKING

STAFF KNOWLEDGE

BLUE LIGHT
Diagnose and Treat

%?

%?
The results of the Gap Analysis help us to identify our **Strategy**. Start with the biggest gap and then move to the next biggest gap until at least 80% blue light is achieved.

The strategy is what we are going to do to mitigate the impact of the bundle.
Doctor is waiting for patients

Test results are not ready

Why?

Patients haven't completed symptom form

Why?

Patients arrive without completed form

Why?

Patients don't understand the consequences of not bringing completed forms

The Problem to Address (the Root Cause)
CONNECTING OPERATIONS & THE BUDGET PROCESS

- Ensure investments in budgets result in measurable improvements
- Provide sound data for budget decisions
- Create capacity in operations to:
 - Reduce need for additional budget requests
 - Maintain adequate buffer for workload fluctuations
 - Reinvest resources as appropriate
While Governor Herbert has set a 25 percent improvement target, the process of improving is never complete. With never-ending changes in policy, technology, demand and even our own knowledge, the opportunity to improve **ALWAYS EXISTS.**
For more information, refer to the GOMB website at: gomb.utah.gov

or contact Phil Dean at phildean@utah.gov